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Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene
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Mechanical stiffness of monolayer graphene with randomly distributed vacancies is studied using molecular-
dynamics simulation and elasticity theory. Nanoindentation is used to obtain Young’s modulus and the effective
spring constant which decrease linearly with the percentage of vacancies. The load and unload curves are the
same and the breaking force and breaking points depend on the percentage of vacancies. Fracture may appear
near the boundaries. We introduce a simple method to make the system vibrate by pulling up the atomic force
microscopy tip from the center of the clamped circular monolayer graphene which then starts to vibrate.

DOI: 10.1103/PhysRevB.81.235437

I. INTRODUCTION

Graphene is an almost flat atomic layer of carbon atoms
that are densely packed in a honeycomb crystal lattice.!=3
The strength of the sp? in plane bonds in graphene provides
stability even to a single suspended carbon plane in contrast
to crystalline Si or GaAs layers, allowing very light resona-
tors with larger mass or force sensitivity. Those strong bonds
cause an extremely high Young’s modulus, which together
with the large available surface area of these devices enhance
the detector’s sensitivity as well. Graphene has a Young’s
modulus as large as diamond and other carbon nanostruc-
tures and amounts to about 1 TPa.*>

Some recent studies showed unusual thermomechanical
properties of graphene. Anomalous negative thermal expan-
sion and an anomalous temperature dependency of Young’s
modulus up to 900 K were predicted by using Monte Carlo
simulation for a graphene sample with 8640 atoms.® These
unusual behaviors are a consequence of the strong anharmo-
nicity of the graphene sheet. Moreover, Zainalpour-Yazdi
and Christofides’ showed that both Young’s modulus and the
binding energy of graphene increases with the area (A) of the
graphene nanoribbon as a nonlinear A~ function for sys-
tems smaller than 20 nm? while there is a linear correlation
between these two physical parameters for larger system
sizes.

Atomic-scale defects such as vacancies and dislocations
change the physical and chemical properties of carbon
allotropes.®® There are experimental techniques available to
introduce defects in carbon nanostructures such as electron
irradiation,® ion bombardment,'® and plasma oxidation.'!
Transmission electron microscopy and neutron scattering are
two common methods to identify the type of defects in
graphene.'>!3

Carlsson and Scheffler'* used density-functional theory
together with the generalized gradient approximation for the
exchange-correlation functional to study electronic and
chemical properties of a defected graphene sheet with
samples containing 112 atoms in a single supercell. Their
study showed that atomic relaxation forms a combination of
nonhexagonal rings that leads to local buckling around the
defects. There are also several theoretical and experimental
studies on defected graphite.'> El-Barbary et al.'® determined
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some properties of vacancies in graphite using first-
principles calculations. They showed that Kohn-Sham eigen-
values near the Fermi level for perfect graphene are lower
(around 0.8 eV) as compared to graphene with a vacancy. In
the case of a carbon nanotube Krasheninnikov et al.!” em-
ployed density-functional theory and found that the forma-
tion energy of a double vacancy in single-wall carbon nano-
tubes is smaller than that for a single vacancy which is a
consequence of the nanosize and the unique atomic structure
of single-wall carbon nanotubes.

Moreover the actuation and vibration of suspended
graphene is another important research subject. There are a
few experimental methods to induce vibrations in order to
find mechanical resonances such as optical interferometry,*
electrostatically actuating and imaging by scanning force
microscopy,'® nanoindentation of graphene,'® and using pres-
sure difference.> The dependence of mechanical vibration
frequencies of graphene on the thickness and the size of sup-
ported circular graphene have been measured by Poot and
van der Zant.?? They found an almost linear increase of the
frequency versus thickness (=2 nm) for a sample with R
=540 nm on the order of 1 GHz and for R=84 nm on the
order of 10 GHz.

In this paper we study the mechanical properties of de-
fected monolayer graphene for three different percentage of
vacancies and compare the mechanical response of defected
monolayer graphene to the one of perfect monolayer
graphene. The Young’s modulus of the defected membrane is
estimated by using the predictions of the theory of elasticity
for a loaded plate in the large deflection regime. Further-
more, the change in bond length of perfect monolayer
graphene is investigated. The frequency of vibration is stud-
ied by pulling up the center of the clamped membrane using
an atomistic atomic force microscopy.

This paper is organized as follows. In Sec. II we will
introduce the atomistic model and the simulation method.
Section III contains predictions of the theory of elasticity for
loaded and vibrating plates. In Sec. IV we give our main
numerical results and in Sec. V we will conclude the paper.

II. MODEL AND METHOD OF CALCULATION

Classical atomistic molecular-dynamics simulation have
been employed to simulate the nanoindentation of a sus-
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pended defected graphene membrane. Initially the coordi-
nates of all atoms in graphene are put in a flat surface of a
honeycomb lattice with nearest-neighbor distance equal to
0.142 nm. A rigidly clamped boundary condition was im-
posed. The shape of the indenters was chosen as a square-
based pyramid in a fcc structure (lattice constant equal to
3.92 A or 0.392 nm) and it is assumed rigid during our simu-
lation. The radius of the circular graphene membrane is R
=15 nm

and three cases of randomly distributed vacancies were con-
sidered. The number of atoms in the system is N,, the
percentage of missing atoms is p/100, which implies
N,=p X N/100 vacancies. In practice we distribute the va-
cancies in the system, by removing atoms (not boundary at-
oms) from a perfect sheet with the probability p/100. Algo-
rithmically, for each atom in the prefect sheet, we test this
condition: if a uniform random number in the interval (0,1)
is less than p/100, the atom is removed. In this study
the number of atoms in monolayer graphene are N,
=28.082,27.767,27.496,27.220 for the systems with p=0,
p=1, p=2, and p=3. The number of tip atoms are fixed to
N,=371 with bottom area 2.02 nm?. We did not allow va-
cancies at the boundary. We simulated the system at room
temperature 300 K by employing a Nosé-Hoover thermostat.
The initial velocities in each direction, were extracted from a
Maxwell-Boltzman distribution at the given temperature.

The Brenner’s bond-order potential*! was used for the
carbon-carbon interaction and a Lennard-Jones (LJ) potential
U(r)=4&{(a/r)'?>=(a/r)%} for the indenter-graphene interac-
tion. To model the interaction between the tip and graphene,
we use the LJ parameters for Pt atoms with £=68.3 meV
and 0=2.54 A.22 For a two-component system, as studied
here, the parameters for the mixed interaction between the
two types of atoms can be estimated by the simple average
suggested by Steel.” In LJ potential, o is the distance at
which the potential is zero and e is the depth of the potential
well. Moreover, to save computational time, we truncated the
LJ potential at the cut-off distance of r.=3.50.

After equilibrating the system during 50 000 time steps,
the lowest position of the tip’s atom is located a few ang-
stroms, i.e., =3.6 A above the graphene layer. Ar=0.5 fs, is
the time step in our simulation. The indenter is pushed down
slowly with 0.1 A in a time span of 5000A7 which is equiva-
lent to a velocity of 4 m/s. The indenter atoms interact only
with the carbon atoms through the LJ interaction potential.
Since we create defects randomly in addition to single va-
cancies there are a few double vacancies while triplet and
higher-order vacancies are very rare in the studied situations.

To vibrate the clamped circular monolayer graphene
membrane we pull up the tip slowly with the above-
mentioned velocity. After the tip is sufficiently retracted
(typically 1.75 ns) the graphene membrane is released and
the membrane starts to vibrate freely without sensing the tip.
After this point it has an almost sinusoidal vibration with
frequency that depend on p and the size of the monolayer
graphene. We sampled a few periods of these vibrations and
determined the oscillation frequency.

PHYSICAL REVIEW B 81, 235437 (2010)

III. THEORY OF ELASTICITY
A. Loaded plate

The size of the system and the used deflection values
ensure that nonlinear elasticity theory?* for a circular flake
with a large deflection in the z direction is applicable for our
graphene circular membrane. In general, the solution of the
governing nonlinear differential equation as obtained from
elasticity theory for rigidly clamped boundary condition is
given by?

=), (1)
v

where r is the radial position, R is the radius of the circular
plat, z(r) is the deflection at radial position r, & is the thick-
ness of the plate, £ is the Young’s modulus, and F is the
concentrated load on the flake. In Eq. (1) the function G(v) is
a complicated function of the Poisson ratio.> We use z(0)
={ as the graphene deflection at r=0. Our computer simula-
tions confirm this behavior for small percentage of vacancies
with large deflections of defected graphene which we will
discuss in the next section.

The force-displacement curves have been measured re-
cently by Lee et al.?® and they showed that it can be approxi-
mated by a simple polynomial function having a linear and a
cubic term

F=al+bl. (2)

When the bending stiffness is negligible and the load is small
the force deflection can be approximated by the linear term
while the second term dominates for large deflection.?” Here
we show that for a small percentage of vacancies the same
functionality as Eq. (1) for force-deflection holds. The de-
pendence of the parameter b in Eq. (2) on the geometrical
and mechanical parameters can be obtained by comparing
Egs. (1) and (2) for the central point which gives the follow-
ing relation for Young’s modulus:

4bG(v)R?

Th ’ ®)

where h is the thickness and G is a complex function
of Poisson’s ratio which can be fitted by the line G(v)
=-0.593v+0.9365.%°

B. Free vibrating plate

Another familiar class of problems in the theory of elas-
ticity is the vibrating shell or plate.”*?® The aim of these
category of problems is to find the characteristic frequencies
of the vibrating plates for different boundary conditions. One
of the most important and applicable situation is a clamped
circular plate. The equation of motion for free vibration in
polar coordinates is

ERW du(r, 6,1)
—————V*ul(r, 0,0) + ph——="—"=0, 4
21— W00 +ph—05 @

where p is the mass density of the plate. For a natural
frequency—w—we have u(r, ,1)=Z(r, 6)e'*" and the time-
independent equation can be written as
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FIG. 1. (Color online) A snap shot of an indenter above circular
monolayer graphene with radius R=15 nm and 1% of vacancies.
Here we applied clamped boundary condition.

ER’ 4 2
1201 - VZ)V Z(r,0) + " phZ(r,0) = 0. (5)
Separating the variables by substituting Z(r, 6)=z(r)®(6)
one can solve Eq. (5) exactly for both radial and angular
terms. For a closed circular plate the angular term is given by
cos n(6—¢p) where n is an integer number. The differential
equation for the radial part is Bessel’s differential equation.
For a perfect plate with clamped boundary condition as
2(r)],.xg=0 and % +=z=0 the radial solution is a linear com-
bination of the first [J,(r)] and the second [7,(r)] kind of
Bessel’s function, z(r)=CJ,(r)+DI,(r). Substituting the so-
Iution in the boundary conditions gives an equation for the
normal frequencies. Values of the roots of Bessel’s function
which are counted by the integer m determine the natural
frequencies?®

x> EW?

“2mr? N 12p(1 - 1)

Jonn (6)

where x,,, are the roots, x5p=3.196, x¢;=4.611, x;,=6.306,
etc.
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IV. RESULTS AND DISCUSSION

Figure 1 shows a snap shot of a circular monolayer
graphene membrane with p=1 and R=15 nm. The black at-
oms are the tip atoms which push the sheet in the center of
the membrane. The simulations are done for room tempera-
ture. Figure 2 shows two snap shots of part of a graphene
sheet, the left-hand side (LHS) picture is the part in the vi-
cinity of the boundary and the right-hand-side picture is the
part under the tip, i.e., contact area region. As can be seen
from Fig. 2 due to the load, ring structures are found in the
contact area. We found that the bond lengths for p=0 are
larger in the contact area as compared to the other regions.

A. Changing the bond lengths under load

In the bottom panel of Fig. 3 the radial distribution func-
tion, g(R,,), versus nearest-neighbor distance R,,, of the car-
bon atoms are shown for p=0. Notice that loading graphene
causes an increase of the mean value of the bond length.
The solid curves are two Gaussian fitted functions for the
unloaded case with {=0 nm and loaded graphene with
{=-3.75 nm at T=300 K. The mean values of the Gaussian
function are R, =1.426 A and R,,=1.439 A, and standard
deviations are 0.0332 A and 0.0352 A, respectively. The
variation of R,, with respect to the deflection values are
shown in the top panel of Fig. 3. Dashed line is the best fitted
curve to the data for R,,. This curve is quadratic with respect
to the deflection value: R,,=1.426125+0.00102%. This
behavior is different from the dependence of R,, and its
variance with respect to temperature where R,, is unaltered
due to temperature while the variance increases as \T below
T=900 K.°

B. Mechanical stiffness

The z component of the forces applied to the graphene
atoms from the indenter are calculated by summing over the
total reaction forces

FIG. 2. (Color online) Two enlarged parts of Fig. 1. Left: some typical defects in the graphene sheet with 1% vacancies. Right: rings of
C atoms appear around vacancies in the tip contact area (black square region). This snap shot is taken close to the breaking threshold.
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FIG. 3. (Color online) Bottom: radial distribution function of the
first nearest-neighbor distance, R,,, for unloaded monolayer
graphene and loaded graphene at {=-3.75 nm for p=0. The solid
lines show two Gaussian fits. Dashed vertical lines indicate the
mean value of the Gaussian fits. Top: the variation of the mean
value of the Gaussian fits versus deflection. The dashed curve is a
quadratic fit to the simulation data.

N, N, 2 | N, N, o \6ks
5 RS DTS Ko
i=1 j=1 k=1 | i=1 j=1 Tij/ Ty

(7)

Because of the short-range nature of the potentials, the sum
over N, and N,, can be truncated and limited to a few neigh-
bors. The first term, k=1 in the parentheses, is the derivative
of the attractive part of the LJ potential and the second term
(k=2) is related to the derivative of the repulsive term.

Figure 4 shows the variation of the applied load at r=0 as
a function of the deflection in the z direction. The plotted
force was obtained as follows. After each 5000 time steps the
tip was pushed down with 0.1 A in order to induce the de-
flection . During this time interval we let the system equili-
brate and in the last 1000 time steps of these intervals we
calculated F' and obtained the mean value of F. Thus in a
simulation with 10° time steps we have 200 points in Fig. 4.

As can be seen from Fig. 4 increasing the number of
vacancies reduces the force on the tip for fix displacement
value as is expected because, the number of interacting at-
oms on the tip decreases with increasing p. We fitted a func-
tion F=al+b{> to the results, according to Eq. (2), which are
shown as solid curves in Fig. 4. Here { is the deflection value
in the central point.

In Fig. 5 the variation of the two parameters versus the
defects percentage are shown. Notice that a has almost a
linear dependence that can be fitted to a=-0.84p+3.085 and
b=-0.388p+7.09. Decreasing a gives a weaker effective
spring constant for monolayer graphene. Applying the theory
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F(nN)

FIG. 4. (Color online) The force deflection data for monolayer
graphene with p% defects (vacancy) in the system. The radius of
the membrane is R=15 nm and temperature is 7=300 K. The de-
fects were randomly distributed in the graphene sheet. Solid curves
are fitted results using Eq. (2).

of elasticity for large deflection,” one can find the Young’s
modulus according to Eq. (3). Using Eq. (3) and the almost
linear function G(v) obtained in Ref. 25 [G(r=0.25)
=0.83] with #=3.45 A our simulation results for Young’s
modulus are listed in Table I. These numbers are comparable
to those found in nanoindentation experiments, i.e.,
1.0£0.1 TPa in Ref. 26 and 0.5*0.1 TPa in Ref. 19. Ar-
royo and Belytschko®calculated E equal to 0.7 TPa by using
Tersoff-Brenner force field. Note that employing smaller val-
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FIG. 5. (Color online) Variation of the coefficient (a) b and (b) a
in Eq. (2) versus p. The solid lines are linear fits. Error bars are of
the order 0.005 in (a) and on the order 0.05 in (b).
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TABLE 1. Young’s modulus calculated by using Eq. (3). The calculated frequencies using molecular-
dynamics simulation, f,,,. Prediction from elasticity theory for the frequencies f; using Eq. (8).

E Sma Ji Fy &
p% (TPa) (GHz) (GHz) (nN) (nm)
0.0 0.501 =0.032 20.0x1.5 17.2 80=£5 5.0x0.3
1.0 0.471+0.025 16.0£1.0 16.8 704 4.8+0.3
2.0 0.442+0.022 8.9+£09 16.3 65*+4 45+04
3.0 0.413+0.019 4.0*+0.5 15.8 55*+4 44+04

ues for the thickness of monolayer graphene? causes an in-
crease in the Young’s modulus. If we take the thickness equal
to the carbon-carbon bond length, ie., h=1.42 A the
Young’s modulus increases to E=1.2 TPa for p=0. The lin-
ear reduction in the Young’s modulus with defect concentra-
tion can be used experimentally to infer the defect concen-
tration in graphene.

In the case of perfect graphene the fractured area of the
membrane occurs under the tip, i.e., in the contact area, see
Fig. 2. But for defected graphene when p # 0 it may occur in
other points even in the vicinity of the boundary. Usually the
breaking threshold occurs for deflections around 5 nm for
p=0 which decreases with increasing p. The breaking forces
(F)) and the breaking deflections (¢;,) are listed in Table 1. In
the experiments of Ref. 26 on perfect graphene, they em-
ployed two micron-size circular samples with radii 500 and
750 nm, and two thick indenter with radii 16.5 and 27.5 nm.
The obtained breaking forces were 1770 nN and 2980 nN for
tips with radius 16.5 nm and 27.5 nm, respectively. The ratio
between the breaking deflection and the sample radius, varies
from 0.2 to 0.3 for tip size 16.5 to 27.5 nm. We found for this
ratio {,/R=0.33 which is not much different from the ex-
perimental values. In our study we used a small tip (with an
effective radius, in the order of 1 nm) above a circular
sample. Since the bond lengths increases at the surface
boundary and the probability of finding two double or higher
order vacancies in the vicinity of each other is considerable
(see LHS of Fig. 2, the out of the center region) and this
probability increases with p hence the fracture region might
appear out of the center for p # 0. Furthermore, the breaking
force is reduced when increasing p. Therefore the fracture
area position depends on p. According to our simulation re-
sults the same load and unload force deflection curves are
found independent of the vacancy percentage.

C. Free vibrating frequencies

For actuating monolayer graphene we pull up the tip and
after separating the tip from monolayer graphene which oc-
curs when the total force on the tip become zero, we ex-
tracted a series of z component of monolayer graphene ver-
sus time (for an ~ns range). Figure 6 shows the variation of
the z positions of the center of mass of monolayer graphene
for the cases p=0 and p=3%. Calculating the period of the
vibration, i.e., the frequency f,,; which is listed in Table I. As
can be seen the frequency decreases with increasing the per-
centage of vacancies. This is because of the reduction of
stiffness of graphene which is a consequence of the reduced

mass density and missed sp?> bonds in the sheet. Results are
in good agreement with experimental results where the vi-
brating frequencies are in the gigahertz range.”® The fre-
quency of the fundamental mode for two graphene samples
decreases versus the radius [it is in the [0.2-1.0] GHz range
for R=540 nm and is in the [5.0-11.0] GHz range for R
=84 nm (Ref. 20)]. Therefore, it is expected that for smaller
system, R=15 nm in our simulation, we obtain higher fre-
quencies (Table I). We can also compare our results with the
prediction from elasticity theory by using Eq. (6). For mono-
layer graphene one needs values for the mass density and the
Poisson’s ratio. Assuming p=2200 (Kg/m?) (Ref. 18) and
v~0.165 (Ref. 4) for perfect circular graphene with R
=15 nm and a simple guess for the defected case which we
look as p(p)=p(1-p/100) we find for the frequencies

X2 bGh

" 2mR 3mp(1-17)°

i (8)

where typically we have x,,, ~4. Results are listed in the last
column of Table I. Another estimate of the frequency for
perfect circular graphene can be made by using the mass
density p=0.76 (ug/m?) (Ref. 2) and v~0.165,* which
gives f;=16.4 GHz.
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FIG. 6. (Color online) Variation of the z positions of the center
of mass of graphene versus time for two cases p=0% and 3%.
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Comparing the results for f,, and f, shows that the above
assumption for the mass density of defected graphene is rea-
sonable for small percentage of vacancies and one needs a
more advanced theory for the reduction in mass density and
Poisson’s ratio to explain defected graphene. The theory of
elasticity predicts a much smaller decrease of the frequency
as compared to our simulations which is due to nonlinear
effects.

Furthermore, we did two extra simulations at 7=20 K for
p=0% and p=3%. The Young’s modulus decreases by 5%
and 13% for p=0% and p=3%, respectively, with respect to
the 7=300 K case, see Ref. 6. The vibration frequency for
the system at 20 K with p=0% is almost the same as for T
=300 K while for p=3% it decreases by a factor of 5.

V. CONCLUSION

In this study we showed that defected monolayer
graphene has a lower stiffness with respect to perfect mono-
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layer graphene. Young’s modulus for defected graphene was
found to linearly decrease versus the percentage of vacan-
cies. The force-displacement result could be fitted to the
function F=al+b{>. We found that for given displacement
the exerted force on defected graphene is smaller than the
one for perfect graphene. We introduced a simple method to
vibrate the graphene sheet and showed that the frequency of
vibration obtained from our molecular-dynamics simulation
is in good agreement with experimental results.” We com-
pared our results to those obtained from elasticity theory and
found that only for small percentage of vacancies, the pre-
dictions of elasticity theory, and our simulation results are
close while for larger density they deviate due to nonlinear
effects.
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